Sulfur Dioxide Insertion Reactions of Alkylruthenium Compounds

M. F. JOSEPH and M. C. BAIRD*

Department of Chemistry, Queen's University. Kingston, Ont., K7L 3N6, Canada Received May 2, 1984

Abstract

The compounds CpRuLL'R (L,L' = CO, PPh₃; R = Me, PhCH₂) react with SO₂ in chloroform to form the corresponding S-sulfinato complexes. Consistent with the accepted $S_E 2$ (inversion) mechanism, CpRu(CO)₂Me, which has a relatively high oxidation potential, is inert under these conditions.

Introduction

Reactions of the compounds CpFe(CO)LR (L = CO, tertiary phosphine; R = alkyl) with SO₂ to form S-sulfinates, *i.e.*

$$CpFe(CO)LR + SO_2 \longrightarrow CpFe(CO)L(SO_2R)$$
 (1)

have been long known [1] and are well studied mechanistically [1, 2]. Both kinetic and stereochemical data are consistent with a mechanism involving an S_E2 (inversion) process which is retarded by bulky substitutents on R, but accelerated by ligands L which are good electron donors.

To date, however, relatively little research has been carried out on the analogous ruthenium complexes, the only report being by Jacobson and Wojcicki [3], who found that the compounds CpRu-(CO)₂R (R = Me, PhCH₂) react with liquid SO₂ more slowly than do their iron counterparts.

We have been carrying out a survey of the chemistry and electrochemistry of compounds of the type CpRuLL'R (L,L' = CO, PPh₃; R = Me, PhCH₂) [4], and thus the opportunity was presented to study the SO₂ insertion reactions as well. In doing so, we have extended the known chemistry of the alkylruthenium compounds, and have made comparisons with the iron analogues.

Experimental

The compounds $CpRu(CO)_2Me$ (I), CpRu(CO)-(PPh₃)R (R = Me (II), PhCH₂ (III)) and $CpRu(PPh_3)_2$ -R (R = Me (IV), PhCH₂ (V)) were prepared as reported previously [4]. All SO₂ insertion reactions were carried out by bubbling SO₂ through chloroform solutions of the alkyl compounds at room temperature for 15 min. In all cases except I, which showed no reaction (IR) after 1 hr, the yellow solutions turned slightly pale. In each case the solvent and unreacted SO₂ were removed at reduced pressure, and the

TABLE I. Analytical and Spectroscopic Data for the Compounds CpRuL(PPh₃)SO₂R.

L	R	Analytical Data ^a		$\nu_{\rm CO} \ ({\rm cm}^{-1})^{\rm b}$	$\nu_{\rm SO} \ ({\rm cm}^{-1})^{\rm c}$	$\delta({}^{1}\mathrm{H})^{d}$	$\delta(^{31}P)^{e}$
		С	Н				
CO	Ме	56.35(56.01)	4.38(4.34)	1980	1175,1040	2.74(s, Me), 5.04 (s, Cp), 7.44(m, Ph)	47.9
CO	PhCH ₂	60.29(60.87)	4.41(4.46)	1980	1175,1041	3.90, 4.30 (AB quartet, $J = 12 Hz$, CH_2), 0.56(s, Cp), 7.41(m, Ph)	47.8
PPh3	Me	64.79(65.33)	5.31(4.98) ^f		1160, 1035	2.42(s, Me), 4.53(s, Cp), 7.20(m, Ph)	40.1
PPh3	PhCH ₂	67.36(68.15)	5.56(5.00) ^g		1155, 1030	3.74(s, CH ₂), 4.62(s, Cp), 7.21(m, Ph)	40.0

^aCalc'd in parentheses. ^bCH₂Cl₂. ^cNujol. ^dCDCl₃, int. TMS ref. ^eCDCl₃, ext. H₃PO₄ ref. ^fS: 3.91(4.16). ^gS:4.30-(3.79).

0020-1693/85/\$3.30

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Compound	Chemical Shifts (J _{P-C}) ^a					
	CH ₂	CO	Ср	Ph		
CpRuCO(PPh3)CH2Ph	4.5(7.5)	207.3(19.7)	88.6	121-137		
CpRuCO(PPh3)SO2CH2Ph	78.5	203.1(17.1)	89.2	127-135		
CpRu(PPh ₃) ₂ CH ₂ Ph	3.9(11)		84.3	120-140		
CpRu(PPh3)SO2CH2Ph	74.5		85.7	126-138		

TABLE II.	¹³ C {	¹ H}	NMR	Data
-----------	-------------------	-----------------	-----	------

^aIn CDCl₃, int. TMS ref.

residue was recrystallized from CH_2Cl_2 -hexane to give pale yellow crystals of the product in about 90% yield. Elemental analyses and spectroscopic data for the new compounds CpRuLL (SO₂R), are listed in Table I.

IR spectra were run on a Beckman IR 4240 spectrometer, ¹H NMR spectra on a Bruker HX 60 spectrometer, ³¹P{¹H} and ¹³C{¹H} NMR spectra on a Bruker CXP 200 spectrometer. Elemental analyses were carried out by Canadian Microanalytical Services, Vancouver, B.C.

Results and Discussion

The SO₂ insertion reactions of the phosphinecontaining complexes, II-V, proceeded quickly and cleanly to give the S-bonded sulfinato products. The compounds can be readily differentiated from the possible O-sulfinato isomers on the basis of the sulfur-oxygen stretching frequencies [1]. Thus ν_{asym} (SO₂) and ν_{sym} (SO₂) are found in the ranges 1155–1175 cm⁻¹ and 1030–1040 cm⁻¹, respectively, rather than the lower values normally encountered for O-sulfinates. The ¹H NMR spectrum provides $CpRu(PPh_3)_2(SO_2CH_2Ph)$ of further evidence for S-bonding, as the two methylene protons are magnetically equivalent. O-sulfinato compounds contain a chiral sulfur atom, which would lead to magnetic nonequivalence of the benzyl methylene hydrogen atoms [1]. On the other hand, the magnetic nonequivalence observed for the methylene hydrogen atoms of CpRu(CO)(PPh₃)(SO₂CH₂-Ph) arises because of the chiral metal atom.

We include in Table II ¹³C{¹H} NMR data for the benzyl and benzylsulfonyl compounds; to our surprise, few such data appear to exist in the literature [5]. Interestingly the changes on SO₂ insertion appear to parallel those on CO insertion [7, 8] *i.e.* small upfield and downfield shifts of the CO and Cp resonances, respectively, and a large downfield shift (70–75 ppm) for the α -carbon resonance. As mentioned above, I and $CpRu(CO)_2CH_2Ph$ are reported to react slowly with liquid SO_2 at low temperatures [3]. We find that I is inert to SO_2 in chloroform solution at room temperature, conditions under which the phosphine-substituted compounds II-V react quickly. The results are entirely consistent with the generally accepted S_E2 mechanism [1, 2], as I, at least, exhibits an oxidation potential in methylene chloride which is about 0.5 V higher than those II and III, about 1.15 V higher than those of IV and V, and about 0.3 V higher than that of $CpFe(CO)_2Me$ [4]. Thus I must be considerably less electron rich than the other compounds, and thus less susceptible to electrophilic attack.

Acknowledgements

We thank the Natural Sciences and Engineering Research Council for financial support, Queen's University for a scholarship to M.F.J., and The International Nickel Company of Canada for a loan of ruthenium trichloride.

References

- 1 A. Wojcicki, Adv. Organometal. Chem., .12, 31 (1974).
- 2 T. C. Flood, Topics in Inorg. and Organometal. Stereochem., 12, 37 (1981).
- 3 S. E. Jacobson and W. Wojcicki, J. Organometal. Chem., 72, 113 (1974).
- 4 M. F. Joseph, J. A. Page and M. C. Baird, Organometallics, in press.
- 5 None appears for instance, in the collection of data by Mann and Taylor [6].
- 6 B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds', Academic Press, New York (1981).
- 7 L. F. Farnell, E. W. Randall and E. Rosenberg, Chem. Comm., 1078 (1971).
- 8 L. J. Todd, J. R. Wilkinson, J. P. Hickey, D. L. Beach and K. W. Barnett, J. Organometal. Chem., 154, 151 (1978).